Skip to main content

3 posts tagged with "Gradient Descent"

View All Tags

Understanding Gradient Descent in Linear Regression

· 5 min read
Vadim Nicolai
Senior Software Engineer at Vitrifi

Introduction

Gradient descent is a fundamental optimization algorithm used in machine learning to minimize the cost function and find the optimal parameters of a model. In the context of linear regression, gradient descent helps in finding the best-fitting line by iteratively updating the model parameters. This article delves into the mechanics of gradient descent in linear regression, focusing on how the parameters are updated and the impact of the sign of the gradient.

Predicting Bank Failures Using Gradient Descent and Machine Learning

· 6 min read
Vadim Nicolai
Senior Software Engineer at Vitrifi

Introduction

Predicting bank failures is a vital concern in financial risk management, as it can prevent economic crises and protect investors and depositors. Machine learning, particularly algorithms optimized through Gradient Descent, offers powerful tools for identifying early warning signs of bank failures. In this article, we focus on how Gradient Descent and related machine learning methods are used to predict bank failures, helping institutions and regulators manage risks more effectively.

Understanding Gradient Descent and Its Applications in Trading Algorithms

· 6 min read
Vadim Nicolai
Senior Software Engineer at Vitrifi

Introduction

Gradient Descent is a fundamental optimization algorithm used in machine learning and quantitative finance. In the context of algorithmic trading, it helps in optimizing predictive models, from price forecasting to portfolio optimization. Understanding how Gradient Descent works and how it can be applied in the financial markets is crucial for developing effective trading strategies.

In this article, we will explore the concept of Gradient Descent, its variations, and its applications in trading.